Trigonometric Functions

These notes are intended as a summary of section 6.5 (p. $513-520$) in your workbook. You should also read the section for more complete explanations and additional examples.

Periodic Functions

A function that repeats its values in regular intervals over its domain is a periodic function. The sine, cosine, and tangent functions are examples of periodic functions. The length of the interval over which the values repeat (measured along the x-axis) is called the period of the function.

The Sine Function

Draw the graph of $y=\sin x$ on the axes below.

The sine function has the following properties:
Domain:
Period:

Zeros:
Maximum:
Minimum:

Range:

The Cosine Function

Draw the graph of $y=\cos x$ on the axes below.

The cosine function has the following properties:
Domain:
Period:

Zeros:
Maximum:
Minimum:
Range:
Functions whose graphs have the same shape as $y=\sin x$ or $y=\cos x$ are called sinusoidal functions. A sinusoidal function has a maximum and minimum value that are equidistant from the center line of the graph (a line that is halfway between the maximum and the minimum). The amplitude of a sinusoidal function is the distance from a maximum or a minimum to the center line.

All of the transformations that we learned in chapter 3 can be applied to graphs of trigonometric functions.

Determining Amplitude

The amplitude of a sinusoidal function is equal to $|a|$ when the function is written in the form:

$$
y=a \sin x \quad \text { or } \quad y=a \cos x
$$

Example 1 (sidebar p. 516)

Determine the amplitude of the graph of each function.
a) $y=\frac{2}{3} \sin x$
b) $y=-4 \cos x$

The Tangent Function

Draw the graph of $y=\tan x$ on the axes below.

The tangent function has the following properties:
Asymptotes:
Domain:

Period:
Zeros:
Range:

Determining Period

The period of $y=\sin b x$ or $y=\cos b x$ is $\frac{2 \pi}{b}$. The period of $y=\tan b x$ is $\frac{\pi}{b}$.

Example 2 (sidebar p. 517)

Determine the period of each function.
a) $y=6 \cos x$
b) $y=\tan \frac{2}{3} x$
c) $y=\sin \frac{x}{7}$

Determining Phase Shift

The graph of $y=\sin (x-c)$ is the image after the graph of $y=\sin x$ has been translated c units horizontally. This distance is called the phase shift of the function.

Example 3 (sidebar p. 518)

a) Determine the phase shift of the function $y=\cos \left(x-\frac{\pi}{6}\right)$.
b) Sketch graphs of $y=\cos x$ and $y=\cos \left(x-\frac{\pi}{6}\right)$ for $0 \leq x \leq 2 \pi$.

Example 4 (sidebar p. 519)

Describe how the graph of each function relates to the graph of $y=\sin x$. Then, on the same grid, sketch the graphs of $y=\sin x$ and each function below, for $0 \leq x \leq 2 \pi$.
a) $y=3 \sin x$
b) $y=\sin 3 x$
c) $y=\sin x+3$

Homework: \#3-7, 9 in the exercises (p. 521 - 526). Answers on p. 527.

